(統計史料でみる昭和・平成期【その3】+令和期 附録)

感染検査の感度

奥積雅彦 (総務省統計研究研修所教官)

【はじめに】

新型コロナウイルス感染症(COVID-19)について、PCR検査などの感染検査の感度、偽陽性などが話題となり、ベイズの定理を想起しました。ベイズの定理は数式的には、条件付き確率の式を変形したものにすぎませんが、意味合いが異なります。条件付き確率は、原因(条件)がもたらす結果(順方向の確率)を探るものであるのに対して、ベイズの定理は、ある結果が得られたときに何がその原因かを探るもの(逆方向の確率)です。

本稿では、感染検査の結果と感染症に罹患(原因)している確率との関係などについて紹介します。

【医師国家試験問題】

今回の調べものの過程で、平成28年度(2016年度)に実施された第110回医師国家試験問題に出会いました。事前確率・ 事後確率、偽陽性、感度、PCR検査等の結果を理解する上で、ある意味、良問であると感じましたので、ここに紹介します。 (【出所】厚生労働省HP)

10 ある疾患に罹患している検査前確率が0.1%と推測される患者に、感度90%、 特異度80%の検査を行う。検査後確率を計算するための2×2表を示す。

疾患検査結果	有	無	合 計
陽性	9	1,998	2,007
陰 性	1	7,992	7,993
合 計	10	9,990	10,000

検査が陽性だった場合の検査後確率で正しいのはどれか。

- a 0.45 %
- b 0.9%
- c 4.5%
- d 9.0%
- e 20.0%

【上記医師国家試験問題の答え】

上記医師国家試験問題に登場する用語でいう、検査前確率、検査後確率、感度、特異度等の計算式は、次のとおりです。本問は、検査が陽性だった場合の**検査後確率(陽性的中率**)を求めるもので、正解は a。陽性的中率=①/(①+③)=9/2,007=0.0045 \Rightarrow 0.45%。

疾患検査結果	あり	なし	合計		事後確率(校 ↓	(查後確率)	
陽性	真の陽性① 9	偽陽性 ③ 1,998	1+3	2,007	陽性的中率	1/(1+3)	0.45%
陰性	偽陰性 ② 1	真の陰性④ 7,992	2+4	7,993	陰性的中率	4/(2+4)	99.99%
合計	10 10	3+4 9,990	1+2+3+4	10,000			
	偽陰性率 2/(①+2): 偽陽性率 3/(③+④): 特異度 ④/(③+④): 陽性率 (①+③)/(①+2)	疾患ありの人が真に陽疾患ありの人が偽りの 疾患なしの人が偽りの 疾患なしの人が偽りの 疾患なしの人が真に陰 (2)+(3)+(4):検査した。 (2)+(3)+(4):検査した。 (2)+(3)+(4):疾患に罹	陰性である確率 陽性である確率 性である確率 人が陽性である確率 人が陰性である確率	90.0% 10.0% 20.0% 80.0% 20.1% 79.9%			

【雑感】

今回の調べもので、統計を正しく理解するため、用語の定義などの品質表示の大切さを痛感しました。また、新型コロナウイルス感染症(COVID-19)のPCR検査の感度は、東京大学保健・健康推進本部保健センターHPによれば、高くて70%とされています。感度や陽性的中率などを踏まえ、法に基づく私権制限のあり方、私経済におけるワクチン接種完了又は陰性

証明を前提とした行動制限緩和のあり方について、社会全体で議論する必要があるように思います。

【参考】

東京都における最近 1 週間の人口 10 万人当たりの感染者数 (令和 3 年 2021 年 8 月 21 日現在) は、237 人 (NHKとりまとめ) となっています。感染検査の感度 70%、特異度 99%と想定して、②偽陰性、③偽陽性、④真陰性の件数を推計し、陽性的中率を試算すると、陽性的中率=①/(①+③)=237/1,234= 0.192⇒19.2%となります。

疾患検査結果	あり		なし		合計		事後確率(検査後確率) ↓		
陽性	真の陽性①	237	偽陽性 ③	997	1+3	1,234	陽性的中率	1/(1+3)	19.2%
陰性	偽陰性 ②	102	真の陰性④	98,664	2+4	98,766	陰性的中率	4/(2+4)	99.9%
合計	1)+2)	339	3+4	99,661	1+2+3+4	100,000			
					性である確率	70.0%			
	-, (-	,			陰性である確率	30.0%			
	偽陽性率 ③/(③+6	Ð):	疾患なしの人	が偽りの	陽性である確率	1.0%			
	特異度 ④/(③+④	Ð):	疾患なしの人	が真に陰	性である確率	99.0%			
					人が陽性である確率	1.2%			
	陰性率 (②+④)/(①)+(2)+3+4):	検査した。	人が陰性である確率	98.8%			
	事前確率(検査前確望	率)							
	有病率:(①+②)/(①	+2)+3+4):	疾患に罹患	患している確率	0.3%			

【参考資料】

前掲の資料のほか、次の資料が大変参考になりました。

- 1 大田敏之「ベイズ統計から新型コロナウイルス感染症を考えてみる」(広島県医師会速報第2460号 (2020年11月) 所収) 感度70%、特異度99%の条件で、①2020年9月末における広島県におけるPCR検査での陽性率を陽性者数/県の人口(467人/280万人)から感染率を1/5000)であると仮定した場合と②ニューヨーク市における抗体検査での陽性者とPCR検査での陽性者に10倍の開きがあったことから感染率を1/500と仮定してベイズの定理により試算しています。
- 2 Newton 別冊「確率と統計 ベイズ統計編」(2021年5月)