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Abstract

Consumers are very responsive to sales, yet statistical agency practice typically

under-weights sale prices in the Consumer Price Index (CPI), with some agencies

excluding sale prices completely. Evidence is lacking on how this may impact on

both the representativeness of prices included in the CPI and on estimates of infla-

tion. We use high-frequency scanner data from US supermarkets to explore if there

is any systematic directional impact. The key finding is that the exclusion of sales

prices introduces a systematic effect. We also find that even when sales prices are

included they are systematically under-weighted, but the under-weighting remains

fairly stable over time so that inflation measurement is not significantly affected.
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1 Introduction

Price discounts are a frequent and prevalent part of the consumer shopping experience.

Consumers tend to buy in large quantities during sales, yet the methods used by national

statistical agencies for constructing key inflation measures, such as the Consumer Price

Index (CPI), typically do not reflect this fact. There is little information on how the

resulting under-weighting of sale prices may impact on both the representativeness of

prices included in the CPI and on estimates of price change. Our interest is specifically

whether there is any systematic directional impact when sale prices are under-weighted in

the measurement of inflation.

There has been significant attention to price dynamics over recent years, particularly

given the advent of researcher access to large scanner data sets. In particular, the question

of whether temporary price changes should be included in “sticky price” models for the

purpose of drawing macroeconomic implications has come under much scrutiny in recent

years (e.g. Bils and Klenow 2004; Kehoe and Midrigan 2008; Nakamura and Steinsson

2008; Eichenbaum, Jaimovich and Revelo 2011). However the impact of the treatment of

sales on inflation measurement has been relatively overlooked.

A product is on sale when there is a temporary price reduction, i.e. the price of an

item drops from its pre-sale price only to return to its pre-sale price, or to a new price

which prevails for a longer period of time. We term the non-sale price as the ‘regular’

price. Since sales are discounts on regular prices, it is expected that over the long run

the movement of sale and regular prices would be similar. However, sales can affect the

measurement of inflation if sale price movements differ from regular price movements and

purchasing at sale prices vis-à-vis regular prices change between periods, perhaps due to

macroeconomic conditions.

Some concern has been expressed over whether sale prices are properly accounted for

in the current practices of constructing the CPI, and the possibility that an inadequate

treatment of sale price movements systematically biases the measurement of inflation.

Under-sampling, or improper sampling, of sale prices in relation to expenditure during

sale periods as a potential source of bias has been mentioned by many including Feenstra

and Shapiro (2003), Triplett (2003), Hosken and Reiffen (2004a, 2004b), Griffith, et al.

(2009) and de Haan and van der Grient (2011). For example, de Haan and van der

Grient (2011; p. 37) observe the following from scanner data on detergents for a Dutch
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supermarket chain:

“The quantity shifts associated with sales are dramatic. Consumers react in-

stantaneously to discounts and purchase large quantities of the good—as a

matter of fact, they hardly buy the good when it is not on sale. In this respect

it is inappropriate to speak of a regular price during non-sale weeks.”

The primary sources of quantity responses to sales are typically thought to be the

following: (1) more consumption due to a lower price (Ailawadi and Neslin, 1998), (2)

substitution from other items (van Heerde, Gupta and Wittink, 2003) and (3) a stockpiling

effect (Hendel and Nevo 2006).1 In terms of a cost-of-living interpretation of the CPI,

stockpiling implies that consumers continue to consume at the purchased sale price (plus

the storage cost) even when the price has returned to the regular price. If sale prices are

in general under-sampled, there will a tendency for over-estimating the cost of living.2

Apart from potential substitution bias due to consumers switching to the sale goods,

the bias at the elementary level of price index construction can occur due to the selection

of an unrepresentative set of prices. Because regular prices are more prevalent, there is

a tendency in the statistical agency procedures to select regular prices. National statis-

tical agencies exert substantial effort to choose representative items and stores (de Haan,

Opperdoes and Schut 1999). For example, the U.S. Bureau of Labor Statistics (BLS)

conducts a household survey—Telephone Point of Purchase Survey (TPOPS)—to obtain

information on the relative amount spent in different outlets for each item strata, and field

agents obtain information on the revenue and volume sold at the outlet to ascertain the

relative importance of the varieties in an item strata (BLS, 2007). However, this effort

does not extend to the sampling of sales and regular prices within the item-store choices.

Therefore, even if the item-store is properly chosen according to expenditure shares, the

selected price prevailing at the time of price collector’s visit to the store, which is either a

1Sobel (1984) and Pesendorfer (2002) explain sales as a means for firms and retailers to engage in
intertemporal price discrimination where sale prices target consumers who have low reservation values
and low waiting costs; they respond to sales by stockpiling and then consuming from the stock until the
next sale is offered. Retailers wait to offer the next sale so that the demand accumulates to reach the
point where discounting becomes optimal.

2Hosken and Reiffen (2004b; p. 143) note the following: “The average of weekly and monthly prices,
unweighted by quantities, will overstate the cost of buying a good, especially for those consumers who
“stock up” during sales. This in turn implies that if the frequency of sales differs over time and between
locations, the true costs to the consumer can differ dramatically, even if the unweighted average price is
the same. Hence, inflation measures based on unweighted averages can over- or understate the actual
change in prices.”
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sale or a regular price, may not be representative of the corresponding expenditure share.3

While the Boskin Commission (Boskin et al. 1998), Lebow and Rudd (2003) and oth-

ers have looked extensively into various potential sources of bias for the overall CPI, they

did not explicitly explore the implications of the treatment of sales in CPI construction.

Hence, this paper fills an overlooked gap in the literature.

2 Approach

A price collector surveying stores to collect the price of an item may find that, on the day

of survey, the item was displaying either on a sale price or a regular price. The typical

practice of statistical agencies, such as the Bureau of Labor Statistics (BLS), Australian

Bureau of Statistics (ABS), Statistics Canada and UK Office of National Statistics (ONS),

is to record the listed price at the time of collection where the listed price, taken to be

the transaction price, is either a sale price or a regular price. Irrespective of whether

the collected price is a sale price or a regular price, the price of the item is accorded the

same weight in the index number formula; i.e. the typical statistical agency procedure

does not have any mechanism to explicitly weight the price of an item depending on

whether the collected price is a sale or a regular price. Suppose, in a given store, three

prices corresponding to three items are collected. Out of these three prices, one price

corresponds to a sale price while the other two prices correspond to regular prices. This

implies that in that particular store, implicitly a one-third weight is given to sale prices

and a two-thirds weight to regular prices.4

These implicit weights depend on the probability that a price collector while surveying

the store finds that the item of interest is listed at a sale or a regular price. The longer

the total period of sales of a item in a given year, the higher is the chance that the

price collectors collect sale prices and, consequently, the lower is the chance that the price

collectors collect regular prices. Since sales are temporary and infrequent (Hosken and

3It is not straightforward how this bias can be rectified through weighting of price relatives, even if the
weights correspond to expenditure shares. For example, if most purchases of a item-store choice took place
at sales prices, but the sampled price—the price prevailing when the price collecter visited the store—was
a regular price, then the measure of price change may be biased.

4Not all countries include all sale prices in their national CPI. For example, in Greece “[s]pecial offers
and discounts are not taken into account. Instead, the reduced prices of general offers and general discounts
are collected.” Japan “excludes temporary bargain (within a week) prices”. Spain includes “price reduc-
tions (since January 2002) but excludes special offers”. See OECD Main Economic Indicators: Sources
and Definitions—Consumer price indices, http://stats.oecd.org/mei/ (accessed 10 March 2015).
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Reiffen 2004a, Kehoe and Midrigan 2008, Nakamura, et al. 2011), the probability of a sale

price being collected is low, particularly compared to the probability that a regular price

is collected. This is in contrast to their corresponding expenditure shares, with consumers

buying in larger quantities during sales (de Haan and van der Grient 2011, Kehoe and

Midrigan 2008).5 Thus statistical agency procedures tend to under-sample sale prices in

comparison to their relevance to consumers as given by their expenditure shares.

In order to understand whether the under-sampling of sale prices biases the measure of

price movements, we construct three sets of price relatives corresponding to three different

ways of calculating unit values.6 Beginning with our preferred approach, we calculate the

price relatives, P
(W )
i , for items i = 1, . . . , N , as a ratio of unit values, (p0i )

(W ) and (p1i )
(W )

for periods 0 and 1 respectively, as follows:

P
(W )
i =

(p1i )
(W )

(p0i )
(W )

=
p1r,i · w1

r,i + p1s,i · w1
s,i

p0r,i · w0
r,i + p0s,i · w0

s,i

, (1)

where (pti)
(W ) ≡ ptr,i ·wt

r,i + pts,i ·wt
s,i =

∑Jt

j=1 p
t
r,j,iw

t
r,j,i +

∑Kt

k=1 p
t
s,k,iw

t
s,k,i, for t = 0, 1,. The

ptr,j,i are the regular prices of item i in period t for transactions j = 1, . . . , J t. Similarly

the pts,k,i are the sale prices of item i in period t for transactions k = 1, . . . , Kt. wt
r,j,i =

vtr,j,i/(
∑Jt

j=1 v
t
r,j,i +

∑Kt

k=1 v
t
s,k,i) is the quantity share of (j, i) in period t where vtr,j,i and vts,j,i

are the quantity of (j, i) sold at regular and sale prices at period t, respectively. Similarly,

wt
s,k,i = vts,k,i/(

∑Jt

j=1 v
t
r,j,i +

∑Kt

k=1 v
t
s,k,i) refers to the quantity share of (k, i) in period t.

Having sale prices in the calculation of unit values clearly lowers the unit values in each

period, but the important question for our purpose is whether this inclusion systematically

affects the price relatives, p1i /p
0
i , i.e. the average price change for item i = 1, . . . , N . Sale

prices affect the price relatives if (i) the sale price movements differ from the regular price

movements and (ii) the quantity shares during sales changes between periods.7

Our second set of price relatives, P
(R)
i , is calculated from unit values (p0i )

(R) and

5For example, using a US scanner data set, Kehoe and Midrigan (2008) report that 35.4% of quantity
was sold in sales periods, even though the fraction of sales week was only 20.3%.

6See e.g. de Haan (2004), Silver (2011) and Ivancic and Fox (2013) for more on unit values.
7An implication of including sale prices is that they can make the price relatives, and hence price

indexes, very volatile. Evidence shows that of p1r,i/p
0
r,i and p1s,i/p

0
s,i, the former is more stable (Hosken

and Reiffen 2004a; Nakamura et al. 2011). Some of these volatile price movements may take place in
opposite directions and therefore, when included in an index number formula may cancel each other out.
However, Ivancic, Diewert and Fox (2011) showed that even when “superlative” indexes (Diewert, 1976)
are calculated, in many cases sale prices may produce erratic measures of inflation.
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(p1i )
(R) that use only regular prices as follows:

P
(R)
i =

(p1i )
(R)

(p0i )
(R)

=
p1r,i · g1r,i
p0r,i · g0r,i

, (2)

where (pti)
(R) ≡ ptr,i · gtr,i =

∑Jt

j=1 p
t
r,j,i/J

t for t = 0, 1. ptr,j,i refers to the same regular price

of item i for transactions j = 1, . . . , J t as in equation (1). Note that each regular price

transaction receives the same weight, 1/J , in the construction of the unit values.

For the third method, the quantity shares in (1) are replaced with the proportion

of the period an item is sold at each price. The corresponding price relative, P
(F )
i is as

follows:

P
(F )
i =

(p1i )
(F )

(p0i )
(F )

=
p1r,i · f 1

r,i + p1s,i · f 1
s,i

p0r,i · f 0
r,i + p0s,i · f 0

s,i

, (3)

where (pti)
(F ) ≡ ptr,i · f t

r,i + pts,i · f t
s,i =

∑Jt

j=1 p
t
r,j,i/(J t + Kt) +

∑Kt

k=1 p
t
s,k,i/(J t + Kt) for

t = 0, 1. Suppose, we are interested in constructing monthly unit values, i.e, period t refers

to a particular month and that there are typically four weekly prices in a given month.8

Suppose that out of these prices, three are regular prices and the remaining one is a sale

price. Hence, J t = 3 and Kt = 1, each transaction gets a weight of 1/(J t + Kt) = 0.25,

the regular prices jointly get a weight of J t/(J t +Kt) = 0.75 and the sale price is accorded

a weight of Kt/(J t + Kt) = 0.25, i.e. it gets weighted by the sale frequency. Hence, we

refer to P
(F )
i as the frequency weighted price relative of item i.9

We have defined our three different price relatives in (1), (2) and (3) from three

different ways of calculating unit values in each period. Note that (pti)
(W )

< (pti)
(F )

<

(pti)
(R)

for t = 0, 1. However, this inequality in the unit values does not necessarily imply

that their corresponding price relatives also differ in a systematic manner. The price

relatives P
(R)
i and P

(F )
i would differ from our preferred price relative P

(W )
i if (i) there are

changes in the magnitude of sale price dips, leading to differential movements of regular

and sale prices and (ii) the deviation between the relative frequency of sales and the

corresponding quantity share changes between the comparison periods.

8The evidence from the literature shows that retail prices are usually set at most once a week, implying
there will be a maximum of 52 different prices of a item in a given year, out of which some are sale prices
while others are regular prices (Dutta et al. 2002, Chevalier et al. 2003, Kehoe and Midrigan 2008 and
Eichenbaum et al. 2011).

9In practice, agencies collect prices during a particular week of a month rather than every week of a
month as implied in equation (3). If the occurrence of sales does not differ systematically across weeks of
a month then the implicit weight accorded to the sale prices while surveying a particular week of a month
would be the same as is in equation (3). Indeed, this is what we find in our empirical results.
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Suppose the magnitude of sale price dip increases in the current period and the sale

prices fall at a faster rate than the regular prices between the comparison periods. This

differential price movement would be accorded different weights in equations (1) and (3)

resulting in a discrepancy between P
(F )
i and P

(W )
i . In particular, since frequency weights

for the sale prices would be smaller than the quantity share weights, P
(F )
i would provide

an estimate of price movements smaller than P
(W )
i . The impact would however be larger

for P
(R)
i specified in equation (2) because P

(R)
i , which accords zero weight to sale prices,

would not capture any differential price movements between regular and sale prices.10

The change in the responsiveness of quantity purchased to sales between the com-

parison periods would also lead to deviation between P
(F )
i and P

(W )
i . Suppose that

w1
s/f

1
s > w0

s/f
0
s , i.e. the quantity share to sales frequency ratio is higher in the cur-

rent period compared to the base period. This implies that the extent to which the sale

prices are under-weighted in P
(F )
i increases in the current period, leading P

(F )
i to over-

estimate price change. If, on the other hand, the under-weighting of sale prices decreases

in the second period, P
(F )
i would provide an estimate of price movements smaller than

P
(W )
i . That is, the dynamics of pts/p

t
r and f t

s/w
t
s determine whether the measure of price

movements provided by P
(F )
i systematically differs from that provided by P

(W )
i . We study

these two indicators in section 3.

In the first stage of constructing the price indexes, we construct indexes using three

alternative formulae based on each price relative P
(V )
i , where V ∈ [W,R, F ] corresponds

to equations (1), (2) and (3), respectively. These elementary indexes are constructed

separately for each product and each city. Hence, nine elementary indexes are constructed

for each product-city pair. In the second stage, we aggregate up the elementary indexes

across cities to obtain indexes separately for each product which in turn, in the final third

stage, are aggregated to obtain overall indexes for all our products and cities.

The Jevons price index, a symmetrically weighted geometric mean index, is used by

many leading statistical agencies at the elementary level of aggregation when appropriate

weights for item price relatives are unavailable. The Jevons index between periods 0 and

1, P
0,1(V )
J , can be written as follows:

P
0,1(V )
J =

I0,1∏
i=1

[
(p1i )

(V )

(p0i )
(V )

]1/I0,1
, (4)

10See Fox and Syed (2015) for a detailed derivation of these results.
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for items i = 1, . . . , I0,1 and V ∈ [W,R, F ]. Here, i refers to an item which has a distinct

product code sold in a distinct outlet. In other words, each item within a product category

sold in a distinct outlet is treated as a separate item. These are also the item-outlet pairs

which are matched in period 0 and 1, giving a total of I0,1 items.11

A price index with a similar geometric form that can be used when expenditure share

weights are available is the Törnqvist index given in equation (5), P 0,1
T , where we drop the

superscript V for notational convenience though we construct three separate indexes for

V ∈ [W,R, F ]:12

P 0,1
T =

I0,1∏
i=1

(
p1i
p0i

)0.5(S0i +S1i )

. (5)

As before, i refers to a particular item-outlet pair which are matched between peri-

ods 0 and 1. St
i is the expenditure share of i in period t = 0, 1 and is calculated as∑Nt

n=1 p
t
i,nv

t
i,n/
∑I0,1

i=1

∑Nt

n=1 p
t
i,nv

t
i,n for t = 0, 1, where pti,n and vti,n are the price and quantity

of item i sold in week n in period t = 0, 1. In the case where P
(R)
i is the price relative, the

expenditure shares are obtained from the quantities sold only at regular prices.

As the “chaining” of indexes is usually favoured when there are new and disappearing

goods, chained versions of (4) and (5) are considered, where e.g the chained Törnqvist index

going from period 0 to period M is as follows:

P 0,M
T = P 0,1

T × P 1,2
T × . . .× Pm−1,m

T × . . .× PM−2,M−1
T × PM−1,M

T , (6)

where items are matched between adjacent periods.

While there are well-documented advantages from chaining, problems with “chain

drift” can emerge with highly volatile data, as is typical with high-frequency scanner data;

chaining can result in price change estimates that are so explosive that they lack credibility.

Ivancic, Diewert and Fox (2011) proposed a solution to this, which they labelled the Rolling

Window GEKS (RWGEKS) index. This uses the multilateral GEKS index, updated using

a rolling window of a prespecified length. For monthly indexes, they proposed that a

11As the Jevons index assigns equal weights to the price relatives, this can be thought of as providing a
“purer” view of the impact of the alternative methods of construction of the price relatives compared to
the other indexes considered. Of the class of elementary indexes, the Jevons formula has been shown to
have relatively attractive properties (Diewert, 2010). Although it is not considered here, the Dutot index
is also commonly used by statistical agencies at the elementary level. See Silver and Heravi (2007) for a
comparison of the Jevons and Dutot indexes using scanner data.

12The Törnqvist index is a member of the “superlative” family of indexes, which have been shown to
have attractive properties from the economic approach to index numbers (Diewert, 1976).
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natural choice for the length of a window is thirteen months as it allows strongly seasonal

commodities to be compared. This yields the Rolling Year GEKS (RYGEKS) index. While

Ivancic, Diewert and Fox (2011) used the GEKS index, which is a geometric mean of all

bilateral Fisher index comparisons, we use the multilateral index of Caves, Christensen

and Diewert (1982) (CCD), which is a geometric mean of all bilateral Törnqvist index

comparisons. This approach is consistent with de Haan and van der Grient (2011), and in

using the Törnqvist index it is closer to the practice of the Bureau of Labor Statistics in

CPI compilation (BLS, 2007). We call this the Rolling Year CCD (RYCCD) index which

has the following form, going from period 0 to period T , where T > 12, and using the

Törnqvist index formula as in (5):13

P 0,T
RY CCD ≡

12∏
t=0

[
P 0,t
T × P t,12

T

]1/13 T∏
t=13

T∏
T−12

[
P T−1,t
T × P t,T

T

]1/13
. (7)

In this case, to maximize the items included, matching is between each of the comparison

periods in each index constructed.14

In the second stage of the construction of indexes, we aggregate the elementary indexes

defined in equations (4), (5) and (7) using expenditure share weights to obtain indexes

separately for each product. We define P
m−1,m(V )
Z,x,c as the elementary index measuring

the price changes between periods m − 1 and m for product category x in city c, that

uses the price relative V ∈ [W,R, F ] and the index number formula Z ∈ [J, T,RY CCD].

Let exptx,c ≡
∑Im−1,m

i=1

∑Nt

n=1 p
t
i,n,x,cv

t
i,n,x,c be the total expenditure on all items in product

category x in city c for t = m − 1,m, and exptx ≡
∑C

c=1 exp
t
x,c be the total expenditure

on all items in product category x aggregated over all cities for t = m − 1,m. Then we

calculate the index for product category x between periods m − 1 and m, and for each

13In unreported results, we found that using either the Fisher or the Törnqvist index made little differ-
ence, and the resulting RYGEKS and RYCCD indexes approximate each other to a very high degree.

14In addition to the above 9 elementary indexes for each product-city pair, we calculated two other
sets of Törnqvist indexes. In the first set, in calculating the unit values, an item with a distinct product
code sold in different outlets is treated as the same item (as opposed to distinct items). Hence, the unit
values defined in equation (1), (2) and (3) and the corresponding expenditure share weights are calculated
by aggregating the transactions across weeks and different outlets. In the second set, we consider the
transactions of only week 2 of each month, while treating each item sold in distinct outlets as a different
item. Since there is no aggregation required in this case to obtain unit values, the price relatives in (1)
and (3) become the same. The main thrust of the results shown by these two additional sets of indexes is
the same as is found from the indexes in equations (4), (5) and (7).
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V ∈ [W,R, F ] and each Z ∈ [J, T,RY CCD] as follows:

P
m−1,m(V )
Z,x =

C∏
c=1

[
P

0,m(V )
Z,x,c

P
0,m−1(V )
Z,x,c

]0.5(Sm−1
x,c +Smx,c)

, (8)

where St
x,c = exptx,c/exp

t
x is the expenditure share of city c for product x for t = m−1,m.15

The indexes in equation (8) constructed for two consecutive periods are chained as in (6)

in order to obtain an index measuring the price changes between period 0 and M for each

product category x.16

In the third stage of our index construction, we aggregate all the P
m−1,m(V )
Z,x indexes of

equation (8) to obtain price indexes measuring the overall price movement of all products

and cities included in the analysis:

P
m−1,m(V )
Z =

X∏
x=1

[
P

0,m(V )
Z,x

P
0,m−1(V )
Z,x

]0.5(Sm−1
x +Sm

x )

, (9)

where St
x = exptx/

∑X
x=1 exp

t
x is the expenditure share of product x across all cities for

t=m− 1,m. The indexes in equation (9) are chained in a similar way as in (6) to obtain

a cumulative index measuring price changes between period 0 and M .17

3 Data and Results

We use the IRI Academic Data Set for the period 2001-2011, which provides weekly prices

and quantities for each item sold separately in each store in different cities in the US (Bron-

nenberg, Kruger and Mela, 2008).18 We use data for six major cities: Chicago, Houston,

Los Angeles, New York, Philadelphia and Washington, DC. The ten products selected for

this study are beer and ale, carbonated beverages, coffee, cold cereal, frozen dinner and

15In the special case where m=1, i.e. the prices are compared between period 0 and 1, the denominator
of the equation (8) takes the value 1.

16In the second stage, we have also constructed indexes for each city which are obtained by aggregating
the elementary indexes across all products; for results, see Fox and Syed (2015).

17These aggregated indexes are shown in Figure 2 of Section 3 for all V ∈ [W,R,F ] and Z ∈
[J, T,RY CCD].

18In constructing our monthly indexes, starting from the beginning of a year, we define the first four
weeks as the first month, the second four weeks as the second month and the next five weeks as the third
month. The same procedure is followed to define the other months of the year. This implies that the 3rd,
6th, 9th and 12th month of a year consist of five weeks, while the other months consist of four weeks of
data.
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entrees, household cleaning products, laundry detergents, margarine and butter, peanut

butter and soup. Many of these products match closely with the item definitions used by

BLS price collectors at stores during sample collection for the CPI (BLS, 2007). From

Table 1, this sample of ten products used in our analysis has around 220 million obser-

vations. The most important product category is carbonated beverages, accounting for a

26.8% share of expenditure, followed by beer & ale and cold cereal, accounting for 16.1%

and 15.8% of expenditure, respectively.

Although scanner data sets provide detailed information on prices and quantities,

they typically do not flag whether the transaction took place at a regular or a sale price.19

We apply a new “sales spotter” algorithm that attributes a price change to sale price if

the price change adheres to certain rules reflecting the basic feature of sale prices.20 The

application of these rules depends on four parameters: (1) the maximum number of periods

the spotter is set to search backwards in time for an observed price (M); (2) the maximum

duration of reduced prices to be treated as sale prices (K); (3) minimum percentage drop

in price (E); and (4) minimum percentage recovery to consider the end of a sale (F ).

Through calibration on the data on a retail chain in Chicago in the US, the Dominicks

Finer Foods, which flags more than 7.5 million sales, we have chosen the values of the

parameters.21 These are: M = 13 weeks, E = 2%, K = 6 weeks and F = 25%. M and E

are set by observing of the empirical distributions of the relevant variables, and K and F

are set using optimisation rules where the objective is to identify the maximum number

of flagged sales subject to the constraint that the difference in the mean duration between

the flagged and identified sales is minimised. See Syed (2015) for further details and Table

1 for some descriptive features of the identified sales in our data.22

19The IRI data provides an indicator taking the value of 1 if the total price reduction (TPR) is 5% or
greater, 0 otherwise. This simple rule, on the one hand, is likely to miss some sale prices and, on the other
hand, incorrectly identify non-sale price reductions as sale prices.

20A number of recent studies investigating persistence of retail prices with and without temporary price
changes have developed alternative algorithms, or “filters”, in order to create price series that reflects
the most frequently occurring or representative price in a given period. While the details of the filters
vary between the studies (and to some extent depend on the purpose of the study), the approaches of
Eichenbaum et al. (2011), Chahrour (2011), and Kehoe and Midrigan (2008), can be described as creating
a hypothetical price series from modal prices and regarding the other observed prices within a given
window as temporary prices. Alternatively, Hosken and Reiffen (2004a) and Nakamura and Steinsson
(2008) consider the price movements as temporary when they take place due to sales.

21The Dominick’s data set is made available for research by Kilts Cen-
ter for Marketing, Booth School of Business, University of Chicago
(http://research.chicagobooth.edu/marketing/databases/dominicks/index.aspx). Chevalier et al.
(2003) use the Dominick’s sales flag to study the pricing behaviour of retailers.

22Sensitivity to this parameterisation was explored, particularly with respect to K. For example, for
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Table 1 shows that the sale prices are substantially lower than the regular prices

(22.7%), where the highest sale price dip is found for cold cereals (28.4%) and the lowest

for beer & ale (12.4%) over the period 2001-2011. Table 2 shows that the sale frequency

share is systematically much lower than the corresponding quantity share.23 On average,

items are sold at sale prices around 22.1% of the transaction weeks, while the quantity

share during these sales weeks is 39.3%, around 1.8 times higher than the sale frequency

share. The largest difference is seen with cold cereal where the quantity share is 2.2 times

the corresponding share of sale frequency and the lowest difference is seen in beer and

ale where the quantity share is 1.5 times the corresponding percentage of the period with

sale prices.24 This implies that statistical agencies over-estimate the unit values, which

implicitly use frequency weighting; compared to the use of quantity shares, more weight

is given to regular prices and less weight is given to discounted low prices.

As discussed in section 2, if the unit values in both periods are overestimated by

the same magnitude then it would not have any effect on the measured price change.

The ways the degree of this overestimation may change are when the magnitude of sale

price dip changes over time and the deviation between the share of sale frequency and the

corresponding quantity share differs between the periods. We find that the magnitude of

the sale price dip and sale frequency share-quantity share ratio remain fairly stable in our

sample period. Table 2 shows the estimates of the growth rate of the magnitude of the

sale price dip and sale frequency share-quantity share ratio over the sample period. In

most cases, the estimated coefficients are not significant at the 5% level, indicating that

there is no deterministic trend of these two variables over the period 2001-2011.25 With

respect to price index construction, it implies that while unit values are overestimated in

K = 4 and K = 6, the results on price indexes obtained from the two sets of identified sales are qualitatively
similar. Therefore, only the results corresponding to K = 6 are discussed.

23The sale frequency is calculated as the ratio of the number of sale weeks to the total number of
transaction weeks. For a product-city pair, a weighted average of [total number of sale transaction weeks
(all items across all stores)]/[total number of transaction weeks(all items across all stores)] was used to
form an average over the six cities, where the weight corresponds to the share of total transaction weeks
in each city. Quantity share of each product is constructed in a similar manner.

24This difference persists across sub-periods of comparison.
25The growth rate is estimated by regressing the natural log of the magnitude of sales on a constant

and yearly time trend for each product. The time trends correspond to a particular month of year, thus
providing us with 12 different estimated coefficients of the time trends. The average growth rate is the
simple mean of the estimated coefficients of the time multiplied by 100. The average standard deviation
is a combination of within-and between-standard deviations of the estimates adjusted for the degrees of
freedom (see Rubin 1987). The annual growth rate of the sale frequency-quantity shares ratio is obtained
in a similar manner.
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each period if frequency weighting is used, there is little evidence that the degree of this

overestimation changes between comparison periods.26

We now see how these observations follow through to price indexes. In the first stage

of aggregation, we construct (chained) Jevons, Törnqvist indexes, and RYCCD indexes as

described in equations (4), (5) and (7) of Section 2, using the three different approaches to

calculating the unit values (and hence price relatives) from (1), (2) and (3); i.e. weighting

by quantity shares, excluding sale prices, and weighting by frequencies of sales and regular

prices. These indexes are constructed monthly over the period 2001 to 2011, for each

product category and city, treating each item within a product category sold in a distinct

outlet as a separate item. In the second stage of aggregation we aggregate across cities

using expenditure share weights as in equation (8) to obtain aggregate indexes for each

product category. In the third stage of aggregation, we then aggregate across products

using expenditure share weights as in (9) to obtain indexes of overall price movement.

Table 3 presents results from the second stage of aggregation, showing average annual

deviations of price indexes that use only regular prices and sale frequency weights from our

preferred indexes that uses quantity share weighting. Completely excluding sale prices,

i.e. using only regular prices, causes an upward deviation on average over all categories

for the sample period, with the Jevons index being almost 5 percentage points per year

higher each year on average compared to the quantity share weighted index. The Törnqvist

index is only 0.56 points higher if sales are excluded, but there are large deviations for

some product categories, such as household cleaners (2.64 points) and coffee (2.28 points).

By comparison, the deviations are relatively small for all product categories in the case

of the RYCCD index, with an overall average of 0.61 points if sales are excluded. Thus,

the use of the RYCCD index at the elementary level then seems, in general, to result in

relatively small deviations from quantity share weighted indexes, suggesting that the use

of this index could mitigate the effects of severe under-sampling of sale prices.

The use of frequency weights results in lower deviations than if the sale prices are

excluded. There is notably more variation across indexes and products, especially in terms

of the signs of the deviations, with around half being negative. Hence, there does not

appear to be a systematic bias from the use of frequency weights relative to using quantity

26The findings are similar when trends are estimated from quadratic and cubic fits. As an indicative
summary of the findings, we only produce yearly growth rates obtained from fitting a linear trend for the
whole sample period in this paper.
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share weights in constructing the price relatives. This result is consistent with our earlier

finding that there is no tendency for the quantity-to-frequency weights to change over

time.

In Table 4, still at the second stage of aggregation, for each product category we

consider the implications on the indexes of using the Jevons index at the elementary level,

as is common in statistical agency practice, as compared with the superlative Törnqvist

index and the RYCCD index. For each elementary index we consider our three alternative

weighting schemes for constructing unit values. The results show that on average over

the product categories, using the Jevons index and excluding sales leads to estimates

of price change around 3 percentage points higher than if either the Törnqvist index or

RYCCD index were used. With all prices included, using either frequent or quantity

share weights results in deviations that are negative for all product categories except

carbonated beverages, and substantially smaller in magnitude on average. In addition,

there is little difference on average if frequency or quantity shares are used. In summary,

using the Jevons index at the elementary level when sales are severely under-sampled

results in significantly higher indexes over all product categories than if either the Törnqvist

or RYCCD indexes are used, but lower indexes otherwise. Thus, ensuring that sales

are appropriately captured in sampling appears more important than which of our index

formulae is used at the elementary level.

Figure 1 plots the Törnqvist indexes for each product category using the three different

approaches to calculating price relatives from (1), (2) and (3). While there are varying

patterns of price paths for these products over the sample, consistently the exclusion of

sale prices leads to noticeable (generally upward) deviations from our preferred approach

which uses all prices and the corresponding quantity share weights. In contrast, the under-

weighting from using frequency weights seems to result in little difference.

Figure 2 plots results from the third stage of aggregation as in equation (9), which

constructs indexes of overall price movement over all product categories and cities. It

is clear that placing zero weight on sales (i.e. excluding them in constructing the price

relative as in (2)), results in indexes with an upward bias. However, consistent with the

results reported in Table 3, there appears to be no clear systematic relationship between

the results from using frequency weighting and quantity share weighting in constructing

price relatives, regardless of whether Jevons, Törnqvist or RYCCD indexes are used. Thus,

13



it is clear that the inclusion of sale prices dominates the choice of quantity or frequency

weights in the price relatives.

Finally, as statistical agencies often collect price information from a particular week

in a month in constructing indexes, Figure 3 plots the results from the third stage of

aggregation using quantity share weights but making different assumptions on which week’s

data are available, including using data from all weeks. The figure shows that chain drift

can have a large directional impact when indexes are constructed from a particular week’s

data using Jevons or Törnqvist indexes, yet it appears that the RYCCD index is correcting

for this directional bias; that is, monthly RYCCD indexes constructed from transactions of

a particular week provide a closer approximation to the corresponding index constructed

from the data from all weeks. These results are of particular relevance for statistical

agencies that mostly use data from a particular week in each month, providing another

justification for using the RYCCD approach. Also, these results have implications for

constructing real time indexes using incomplete data, again suggesting that the RYCCD

approach is a preferred approach.

4 Conclusion

We have used a large scanner data set from US supermarkets to examine the impact of price

discounts on the measurement of inflation. While there has been much recent attention to

the issue of price dynamics at the micro level, the impact of these dynamics on inflation

measurement has been relatively overlooked. In filling this gap in the literature, we have

found that statistical agency practice systematically under-weights sale prices and this can

result in biased inflation measurement. Specifically, we have found that national statistical

agencies that exclude or severely under-sample sales prices in the measurement of price

changes potentially introduce an upward bias in their inflation measures. This source of

bias may be more prevalent than one might immediately suppose, with many countries

seeming to have different approaches to the treatment of sales and similar price discounts

in their national CPIs.27

The extreme case of zero weight on sales prices has been empirically found to be

27For statistical agencies that include sales, in our analysis we are implicitly assuming that the price
sampling methodology is accurate in appropriately capturing sale prices. The extent to which sale prices
are inadvertently omitted may also be a source of bias. If the sampling methodology does not appropriately
choose representative items and outlets, that may affect the selection of sale and regular prices.
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problematic, but the same is not true of the use of frequency weights, which tend to

under-weight sale prices. These weights correspond most closely to those implicitly used

by the statistical agencies that include sale prices in their inflation measures. Over ten

product categories and five cities, we have found little systematic difference between the use

of frequency weights and the preferred quantity share weights, which capture the changes

in purchases due to price discounts. This is a perhaps somewhat surprising, yet reassuring

result for the accuracy of inflation measures. Effectively, we have found that if the sale

prices are included even though they are under-weighted, as long as the degree by which

this under-weighting takes place remains the same, the measured inflation will be close to

the true price change.28

We have also found that if statistical agency practice is to (mainly) use data from a

particular week in a month, Jevons and Törnqvist indexes can have chain drift with a large

directional impact. The RYCCD index appears to mitigate this problem, also suggesting

that it is a preferable index for constructing real time indexes with incomplete data.

While this paper has presented a range of results using a large data set and a va-

riety of methods, more analysis, including over a wider range of products, countries and

alternative types of discounts (e.g. quantity discounts, as in Fox and Melser 2014), may

reveal further insights into the relationship between consumer purchasing behaviour and

the measurement of inflation. This type of research with a measurement focus seems over-

due, especially given the extent of related analysis on price dynamics in the marketing

and macroeconomic literatures, and the importance of accurate inflation measurement to

public policy.
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Table 1: Data description and some facts on Sales

Products† No. of Exp. Share Exp. Share Average Sales Average Sales
Obser.‡ by Prods at Sales Price Dip* Duration
(ml.) (%) (%) (%) (weeks)

Beer & Ale 17.77 16.07 32.99 12.40 2.92
Carb. Bever. 42.96 26.81 46.38 21.60 2.29
Coffee 16.71 6.23 33.10 21.66 2.78
Cold Cereal 30.78 15.82 33.57 28.38 2.43
FZ Din. & Ent. 40.41 12.30 40.71 27.42 2.54
House. Clean. 10.33 2.24 23.09 21.04 2.52
Laundry Deter. 13.54 8.17 38.52 25.79 2.52
Marg. & Butter 7.36 2.76 24.62 21.92 2.35
Peanut Butter 5.48 1.94 25.34 19.47 2.68
Soup 34.46 7.67 28.47 28.05 2.60
All Items** 219.79 100.00 37.13 22.71 2.53
† Data description corresponds to 6 cities: Chicago, Houston, Los Angeles,
New York, Philadelphia and Washington, DC.
‡ Total number of observations used for calculating price indexes.
* Calculated as the fall in price in the first week of sale compared to the
immediately preceding regular price.
** The figures for “No. of Obser.” and “Exp. Share by Prods” are summations
while others are expenditure share weighted averages across products.

Table 2: Frequency and size of Sales, volume sold during Sales and their changes during
2001–2011

Products† Sale Weeks and Changes in the Ratio of Sale Freq.
Volume Sold Magnit. of Sales to Quant. Share
Sale Quant. Growth Std. Growth Std.

Freq.‡ Share‡ Rate* Error Rate* Error
(%) (%) (%/yr) (%/yr)

Beer & Ale 15.36 23.07 -1.80** 0.92 3.50** 1.20
Carb. Bever. 26.79 45.53 -0.21 1.32 1.69 1.28
Coffee 20.73 37.17 -0.70 1.13 2.81 1.93
Cold Cereal 19.42 43.20 0.05 1.10 1.77 1.35
FZ Din. & Ent. 30.10 48.22 -2.32** 1.02 1.29 1.40
House. Clean. 17.29 28.07 2.12 1.72 -0.30 1.79
Laundry Deter. 21.95 44.90 0.12 0.99 2.28 1.39
Marg. & Butter 18.83 30.57 2.21 1.75 3.44** 1.52
Peanut Butter 16.99 33.07 0.04 2.09 1.85 1.72
Soup 17.47 32.70 0.08 1.56 3.49** 1.47
All Items§ 22.08 39.32 -0.54 1.20 2.21 1.39
† The figures of each product correspond to 6 cities: Chicago, Houston,
Los Angeles, New York, Philadelphia and Washington, DC.
‡ See footnote 22 for explanation of how these are calculated.
∗ See footnote 24 for the method used to obtain the growth estimates.
∗∗ Denotes statistical significance at the 5% level.
§ The figures are expenditure share weighted averages across products.
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Table 3: Average annual deviation of the regular price index and sale frequency weighted
index from the quantity share weighted index for 2001–2011 (in percentage points)

Products† Jevons Index Törnqvist Index RYCCD Index
Regular Frequency Regular Frequency Regular Frequency

Price Weight Price Weight Price Weight
Deviation* Deviation** Deviation Deviation Deviation Deviation

Beer & Ale 1.78 0.01 -0.24 -0.04 0.23 -0.04
Carb. Bever. 4.46 -0.13 -1.14 0.09 0.71 0.25
Coffee 6.19 0.08 2.28 0.12 1.08 0.36
Cold Cereal 5.67 -0.21 1.55 -0.31 0.66 0.08
FZ Din. & Ent. 6.43 -0.14 1.13 -0.28 0.25 -0.27
House. Clean. 5.00 0.07 2.64 0.29 0.89 0.17
Laundry Deter. 7.64 -0.11 2.55 -0.18 1.00 0.06
Marg. & Butter 3.29 -0.09 1.13 -0.05 0.40 0.01
Peanut Butter 3.22 -0.06 0.85 -0.02 0.09 -0.12
Soup 5.22 0.07 0.80 -0.29 0.86 -0.01
All Items‡ 4.84 -0.08 0.56 -0.09 0.61 0.07
† For each product, the indexes are calculated separately for each city. These indexes are
aggregated across cities using the Törnqvist index formula.
* Regular Price Deviation is the difference between the cumulative index for 2001–11 obtained from
the unit values calculated from only the regular prices and the quantity share weighted unit values of
the regular and sale prices. This difference is divided by 11 in order to obtain the annual deviation.
** Frequency Weight Deviation is the similar deviation between the frequency share weighted and
quantity share weighted indexes.
‡ The figures are expenditure share weighted averages across products.

Table 4: Average annual deviation between Jevons index, and Törnqvist and RYCCD
indexes for 2001–2011 (in percentage points)

Products Jevons vs. Törnqvist Index† Jevons vs. RYCCD Index
Reg. Prices: All Prices: All Prices: Reg. Prices: All Prices: All Prices:
Freq. Share Freq. Share Quant. Share Freq. Share Freq. Share Quant. Share

Weights Weights Weights Weights Weights Weights
Beer & Ale 0.74 -1.23 -1.28 0.89 -0.61 -0.66
Carb. Bever. 5.71 -0.10 0.12 4.13 0.02 0.39
Coffee 2.16 -1.79 -1.74 1.79 -3.61 -3.32
Cold Cereal 2.47 -1.55 -1.65 3.60 -1.70 -1.41
FZ Din. & Ent. 3.31 -1.86 -2.00 3.74 -2.31 -2.44
House. Clean. 1.06 -1.53 -1.31 1.29 -2.92 -2.82
Laundry Deter. 4.19 -0.84 -0.91 4.30 -2.50 -2.34
Marg. & Butter 1.16 -1.05 -1.00 0.89 -2.10 -2.01
Peanut Butter 1.49 -0.92 -0.88 1.10 -1.97 -2.03
Soup 2.51 -1.55 -1.91 1.81 -2.47 -2.55
All Items‡ 3.20 -1.08 -1.09 2.96 -1.43 -1.27
† The cumulative difference between Jevons and Törnqvist indexes during 2001–2011 is divided by 11 in
order to obtain the average annual deviation. The deviation between Jevons and RYCCD indexes is
obtained in a similar way.
‡ The figures are expenditure share weighted averages across products.
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Figure 1: Törnqvist indexes constructed from different unit values, 2001–2011
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(b) Carb. Beverages
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(c) Coffee
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(d) Cold Cereal
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(e) FZ Din. & Entrees
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(f) House. Clean. Prods
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(g) Laundry Detergent
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(h) Margarine & Butter
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(i) Peanut Butter
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(j) Soup
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