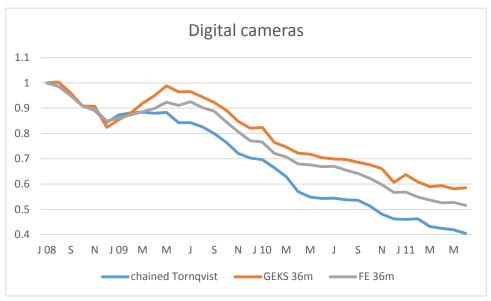
A modification of the GEKS index when product turnover is high

Claude Lamboray, Frances Krsinich

Statistics Luxembourg (STATEC), claude.lamboray@statec.etat.lu Statistics New Zealand, frances.krsinich@stats.govt.nz.

Background

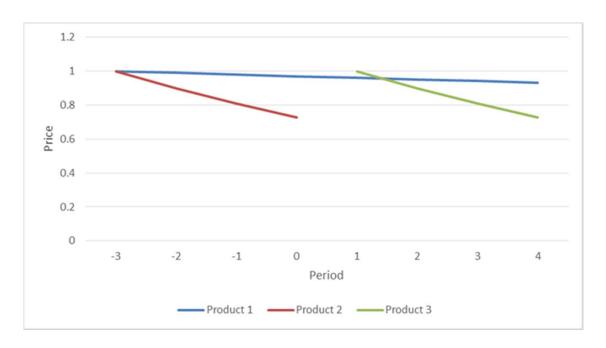

- The GEKS is a multilateral price index which is transitive.
- It is based on an underlying price index (Törnqvist index) which is used to make bilateral comparisons between periods belonging to a fixed time window.

$$P_{t-1,t[1;K]}^{GEKS} = \prod_{k=1..K} (P_{t-1,k} * P_{k,t})^{\frac{1}{K}}$$

 The rolling version of the GEKS has been widely applied to scanner data in order to ensure chain drift free results (see *Ivancic et al* (2011)).

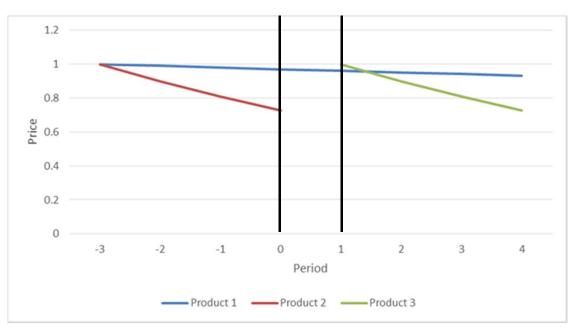
Background

 The GEKS tends to be flatter than the FE index on the same window length.



 These results were derived from a scanner data set covering consumer electronics, with high product turnover

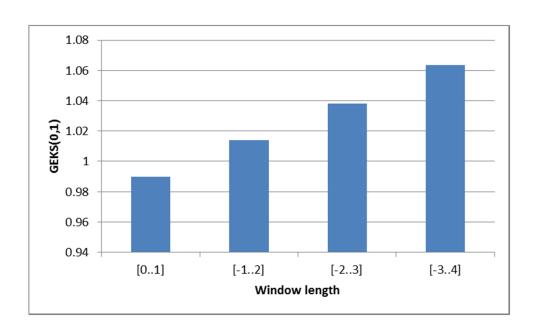
Background


- The aim of this paper is to explore the reasons behind the tendancy of the GEKS to be flatter than the FE – is it related to the product turnover?
- A modification of the GEKS method will be proposed, called the intGEKS, which appears to prevent such behaviour.
- The Multilateral Time-Dummy Hedonic index (TD) will be used as a benchmark price index.
- The TD index
 - explicitly uses characteristics of the products;
 - reflects price movements of new and disappearing products;
 - satisfies transitivity.

Example

- Product 1 decreases each period by 1%. It is available during all periods.
- Product 2 decreases each period by 10%. It is available during the first four periods.
- Product 3 decreases each period by 10%. It is available during the first four periods.
- The two products that are available in each period both have a 50% share.

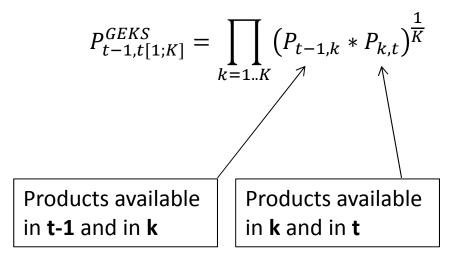
Example

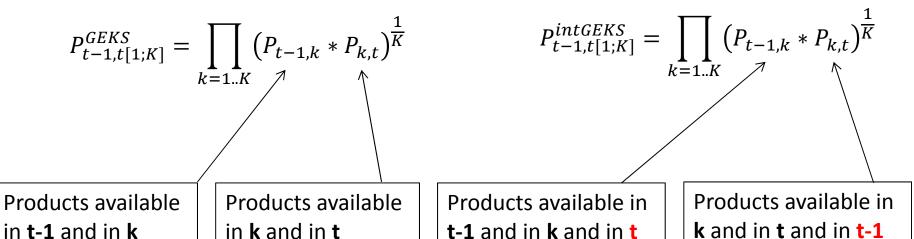


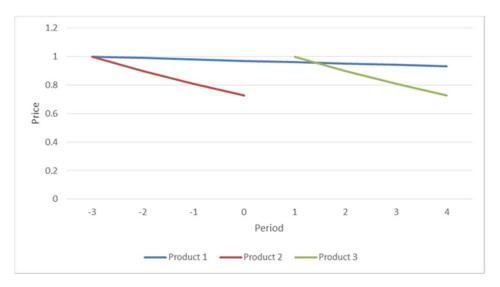
k	$P_{0,k}$	$P_{k,1}$	$P_{0,k} * P_{k,1}$
Period -3	1.189	0.961	1.142
Period -2	1.122	0.970	1.089
Period -1	1.059	0.980	1.038
Period 0	1.000	0.990	0.990
Period 1	0.990	1.000	0.990
Period 2	0.980	1.059	1.038
Period 3	0.970	1.122	1.089
Period 4	0.961	1.189	1.142
		$P_{0,1,[-3;4]}^{GEKS}$	1.063

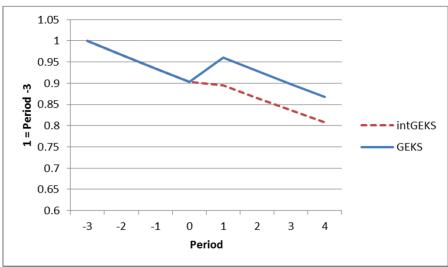
The underlying bilateral indexes $P_{0,k}$ and $P_{k,1}$ are defined on different sets of matched products.

- → The stronger price declines of product 2 (or product 3) are taken into account in an asymmetric way.
- → The GEKS is adjusted upwards.


Example


k	$P_{\theta,k}$	$P_{k,1}$	$P_{0,k} * P_{k,1}$
Period -3	1.189	0.961	1.142
Period -2	1.122	0.970	1.089
Period -1	1.059	0.980	1.038
Period 0	1.000	0.990	0.990
Period 1	0.990	1.000	0.990
Period 2	0.980	1.059	1.038
Period 3	0.970	1.122	1.089
Period 4	0.961	1.189	1.142
		$P_{0,1,[-3;4]}^{GEKS}$	1.063


Enlarging the window length worsens the imbalance created by products 2 and 3 being partly unavailable.


• The intersection GEKS (intGEKS) avoids this imbalance by restricting the bilateral comparisons to products available in all three periods t-1, t and k.

 The intersection GEKS (intGEKS) avoids this imbalance by restricting the bilateral comparisons to products available in all three periods t-1, t and k.

If exactly the same products are available in t-1 and in t, then the GEKS is equivalent to the intGEKS.

→ In our example, both approaches only differ because of the [0,1] link.

The intGEKS can violate transitivity. For instance:

$$P_{1,2[1;K]}^{intGEKS} * P_{2,3[1;K]}^{intGEKS} \neq P_{1,3[1;K]}^{intGEKS}$$

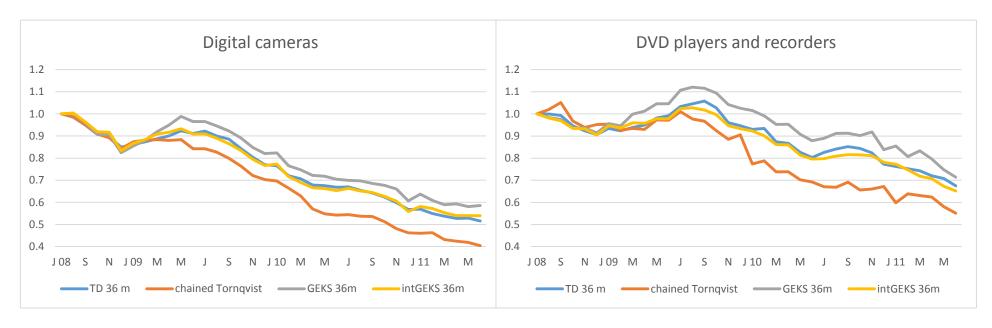
However:

- The degree of violation of the transitivity property can be expected, in the short-term, to be small.
- The rolling versions of the GEKS also formally violate the transitivity requirement.
- Empirical results will show that the intGEKS sits very close to the TD which is known to be transitive.

More generally, in a context of high product turnover rates, what is the relevance of the transitivity property?

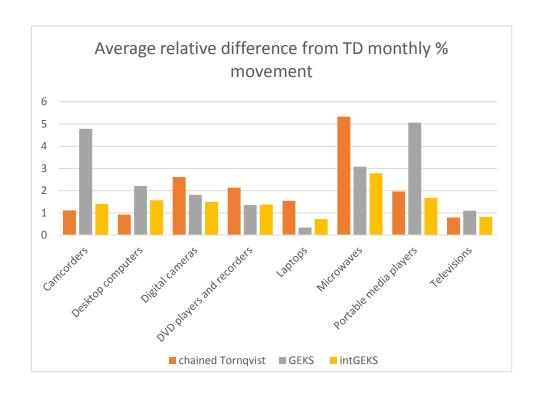
Data

- Scanner data set purchased by Statistics New Zealand from Gfk (sales, quantities and product characteristics).
- Close to full-coverage of the New Zealand market
- Detailed data available from mid 2008 to mid 2011
- 8 consumer electronics product categories: camcorders; desktop computers; digital cameras; DVD players and recorders; laptop computers; microwaves; televisions; and portable media players

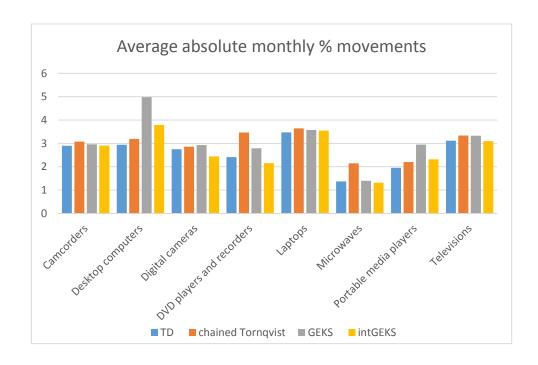

Data

This data set is characterized by a high turnover of products:

product	birth	death	matched
camcorders	27%	27%	46%
desktops	29%	29%	42%
digcamera	25%	25%	49%
dvds	25%	25%	50%
laptops	29%	29%	43%
microwaves	22%	23%	55%
portmedia	24%	25%	52%
television	24%	23%	53%


Average monthly rates of new, old and matched products (note - not quantity or expenditure weighted)

Results


Results for the full 36 month window (July 2008 – June 2011).

Results

• The intGEKS sits closer to the TD index than the GEKS does for six of the eight product categories

Results

 The intGEKS is less volatile than the GEKS index for all eight product categories

Conclusions

- In the context of high product turnover, there is a risk that the GEKS is biased because it treats new and disappearing products asymmetrically.
- A modification (intGEKS) has been proposed which corrects for this.
- The intGEKS is not transitive.
- Empirical results show that the intGEKS sits closer to the TD than the GEKS and that it is less volatile than the GEKS.
- Hence the intGEKS can be an option when no characteristics are available.