

Consumer Price Index with constant tax - the Swedish approach

Martin Kullendorff Statistics Sweden Ottawa group meeting Tokyo May 2015

Outline

- Background
- Nominal vs. real adjustments for excise tax changes
- In practice
- Actual outcome

Statistiska centralbyrån Statistics Sweden

Statistics Sweden Statistiska centralbyrån

Background

Excise vs. value taxes

- Different treatment of value and excise taxes
- Value tax nominal change is when the tax rate as a percentage of the retail price changes
- Excise tax nominal change is when the tax rate in dollars and cents change
- HICP-CT and previous constant tax indices in Sweden

Implications from this principle

- 1. The design of taxes has an effect on price changes
 - Excise tax calculation has in practice meant CPI with constant *nominal* tax
 - Value tax calculation has in practice meant CPI with constant *real* tax
- 2. This way of dealing with changes in excise taxes and subsidies has a dampening effect on inflation

A new index by Statistics Sweden

- CPI is adjusted only for tax changes beyond the normal indexation by the CPI, i.e. actual tax changes.
- A calculation of the CPI at constant tax in real SEK
- If taxes are only indexed to the CPI the inflation rate according to CPI and CPI-CT will be the same

Adjusting for nominal changes in taxes will dampen inflation - example

Statistics Sweden

Statistiska centralbyrån Stati

The basic calculation method

- The basic formula:
 - $\Delta CPI CT = \Delta CPI (effect from \Delta taxes effect from \Delta subsidies)$
- A deduction of taxes and subsidies for each index link: $CPI CT_{2013}^{2015, jan} = CPI_{2013}^{2015, jan} - \sum_{k \in S\&S} W_k^{2013} \times I_{k \ 2013}^{2015, jan}$
- Weights for each tax and subsidy:

$$W_{\rm k}^{2013} = \frac{U_{\rm k}^{2013}}{\sum_{\rm g} U_{\rm g}^{2013}}$$

The basic calculation method - example

Statistics Sweden	Period	Tax group and product	CPI basket, total weight	Tax revenue	Tax weight (%)	Nominal tax change (%)	СРІ	Tax change in CPI- CT (%)	VAT	Effect nominal	Effect CPI-CT
			1	2	3=2/1	4	5	6=4/5	7	8=3*4*7	9=3*6*7
	2013M12	Energy, petrol	1 487 189	10 775	0,72	2,88	101,6	1,3	1,25	0,03	0,01
	2013M12	Alcohol & tobacco, spirits	1 487 189	4 348	0,29	0,00	101,6	-1,6	1,25	0,00	-0,01

Actual outcome based on Swedish data

