

On Measuring Regional or Global Growth and Inflation

D. S. Prasada Rao, Alicia N. Rambaldi and Bert M. Balk 14th Meeting of the Ottawa Group, Tokyo, 20-22 May 2015

Key Concepts and Notation

Gross Domestic Product of country *j* (in national currency units) $GDP^{j} = \sum p_{n}^{j} \cdot x_{n}^{j}$

Nominal GDP : GDP of country *j* expressed in reference currency units using exchange rates

 $NGDP^{j} = \frac{GDP^{j}}{XR^{j}}$

Real GDP : GDP of country *j* **expressed in reference currency units using PPPs** $RGDP^{j} = \frac{GDP^{j}}{PPP^{j}}$

PPPs are amounts of currencies, of different countries, that have the same purchasing power as one unit of a reference currency (e.g. US\$) with respect to a selected basket of goods and services (the scope). Methods were surveyed by Balk (2008), (2009). **Price Level Index (PLI)**

Defined as the ratio of **PPP** to the exchange rate

 $PLI^{j} = \frac{PPP^{j}}{XR^{j}}$

PLIs are transitive, but not invariant to choice of reference country.

Normalisation of PLIs

Adjust the PPPs by a positive scalar such that world real GDP at the new PPPs is equal to world nominal GDP at XRs:

$$\sum_{j} \frac{GDP^{j}}{PPP^{j}/\mu} = \sum_{j} \frac{GDP^{j}}{XR^{j}}$$

This represents current Eurostat National Accounting practice. PPPs are calculated according to the GEKS method.

Global Inflation and Growth (1)

Total real GDP in periods s and t (later) is given by

$$RGDP^{s} = \sum_{j=1}^{M} RGDP_{j}^{s} = \sum_{j=1}^{M} GDP_{j}^{s} / PPP_{j}^{s}$$

$$RGDP^{t} = \sum_{j=1}^{M} RGDP_{j}^{t} = \sum_{j=1}^{M} GDP_{j}^{t} / PPP_{j}^{t}$$

It is important to realize that these two aggregates are in the prices of periods *s* and *t* respectively. The ratio of these two aggregates is similar to the ratio of country-specific nominal GDP in two periods.

Global Inflation and Growth (3)

Using the logarithmic mean it appears that

$$\frac{\sum_{j=1}^{M} GDP_{j}^{t} / PPP_{j}^{t}}{\sum_{j=1}^{M} GDP_{j}^{s} / PPP_{j}^{s}} = \exp\left\{\sum_{j=1}^{M} \Psi^{j} \ln\left[\frac{GDP_{j}^{t} / PPP_{j}^{t}}{GDP_{j}^{s} / PPP_{j}^{s}}\right]\right\}$$
$$= \exp\left\{\sum_{j=1}^{M} \Psi^{j} \ln\left[\frac{RGDP_{j}^{t}}{RGDP_{j}^{s}}\right]\right\}$$

where the weights, adding up to 1, are defined by

$$\Psi^{j} = \frac{L\left[\frac{RGDP_{j}^{s}}{\sum_{k=1}^{M} RGDP_{k}^{s}}, \frac{RGDP_{j}^{t}}{\sum_{k=1}^{M} RGDP_{k}^{t}}\right]}{\sum_{j=1}^{M} L(.,.)} \text{ where } L(a,b) = \frac{a-b}{\ln a - \ln b} \text{ is the logmean.}$$

Global Inflation and Growth (4)

Using NA data country-specific nominal GDP change can be decomposed into price and quantity indices

$$\frac{GDP_j^t}{GDP_j^s} = P_j^{GDP}(s,t) \cdot Q_j^{GDP}(s,t) \quad \forall j$$

Then World Inflation and World Growth are measured by:

$$WI(s,t) = \exp\left\{\sum_{j=1}^{M} \Psi^{j} \ln\left(P_{j}^{GDP}(s,t) \cdot \frac{PPP_{j}^{s}}{PPP_{j}^{t}}\right)\right\}$$
$$WG(s,t) = \exp\left\{\sum_{j=1}^{M} \Psi^{j} \ln\left(Q_{j}^{GDP}(s,t)\right)\right\}$$

Global Inflation and Growth (5)

It appears that if the period *t* PPPs are obtained by extrapolating the period *s* PPPs then world inflation reduces to the price index of the numeraire country. Since there are M choices for the numeraire, an unweighted geometric mean makes sense.

- The entire derivation can be repeated for total nominal GDP. This delivers XR-based global price and quantity indices. They will differ numerically from the PPP-based indices. Different decompositions of the same ratio.
- In both cases the global price index is not invariant to the choice of the reference country.
- Instead of Sato-Vartia one could use Fisher.
- Table 1 is based on ICP data: 2005, 2011, 141 countries.

ICP Inflation and Growth

nen 🔁 Ma	ken • 📔 🍙 🖨	. 🛛 🖂	4 (¢)	🦻 🋂 [à 🗟 (<u>ک</u> ک				Aanpasser
17 / 24	🖎 🕙 😑 🕂 🔳	25% 🔻		8		Geree	edschappen	Invulle	n en onder	tekenen
	Ta	able 1: Reg	ional and	Global G	rowth an	d Inflatior	n, 2005 to	2011		
			EXCHANGE RATE BASED				PPP BASED			
	ICP Region	$\frac{NGDP_{2011}}{NCDP_{2011}}$	Price	Growth	Price	Growth	Price	Growth	Price	Growth
		NGDP2005	CHANGE	(Fisher)	CHANGE	(SV)	CHANGE	(Fisher)	CHANGE	(SV)
			$(Fisher)^1$		$(SV)^2$		$(FISHER)^3$		$(SV)^4$	
	Asia and the Pacific	2.5297	1.5722	1.6090	1.5717	1.6095	1.5648	1.6166	1.5644	1.6170
	Africa	2.1443	1.4286	1.5010	1.4285	1.5011	1.4018	1.5297	1.4016	1.5300
	CIS	2.4622	1.9576	1.2578	1.9577	1.2577	1.9549	1.2595	1.9548	1.2596
	EuroStat-OECD	1.2888	1.2098	1.0653	1.2098	1.0653	1.2024	1.0719	1.2024	1.0719
	LATIN AMERICA	2.5991	1.9725	1.3177	1.9727	1.3175	1.9609	1.3255	1.9611	1.3253
	Iran	2.7520	2.1138	1.3019	2.1138	1.3019	2.1138	1.3019	2.1138	1.3019
	West Asia	2.3175	1.5821	1.4648	1.5821	1.4648	1.6051	1.4438	1.6053	1.4436
	Georgia	2.1408	1.6377	1.3072	1.6377	1.3072	1.6377	1.3072	1.6377	1.3072
	World	1.5388	1.3196	1.1661	1.3194	1.1663	1.2358	1.2451	1.2358	1.2452
	¹ Equation (19), ² Equa	tion (22). ³ Equ	uation (25). 4	Equation (29).					

Why SV is preferred

- Simpler functional form.
- Decomposable (into 3 components; or contributions of groups of countries).
- See Table 2 and Table 3 (in paper).

Components of Inflation

- Bestand Bewerker	[T3S7P23_pap Beeld Venster Help	b]RaoRambaldiBalk_OnMeasuringReg	ionalOrGlobalGrowthAndInflation.pd	lf - Adobe Acrobat	- 0'
Dpenen	🔁 Maken 🛪 📄 🍙 🖨	📝 🖂 🔅 🖻 📝	· 🔥 🕼 🗳		Aanpassen 🔻
 17 	/ 24 1 🖑 😑 🕂 150	% 🕶 📙 🔛 🖪	Gereeds	chappen Invullen en ond	ertekenen Opmer
	¹ Equation (19). ² Equation	(22). ³ Equation (25). ⁴ Equa	tion (29).		
		Table 2: Com	ponents of Global In	flation	
5%	ICP REGION	Domestic Price Change ¹	Exchange Rate Change ¹	Domestic Price Change ²	PPP $Change^2$
	Asia and the Pacific	1.3945	1.1271	1.4354	1.0899
	Africa	1.6089	0.8878	1.6257	0.8621
	CIS	2.1326	0.9180	2.1478	0.9102
	EUROSTAT-OECD	1.1104	1.0896	1.1244	1.0693
	LATIN AMERICA	1.6809	1.1736	1.6968	1.1557
	Iran	2.5035	0.8444	2.5035	0.8444
	West Asia	1.5661	1.0103	1.6155	0.9937
	Georgia	1.5237	1.0748	1.5237	1.0748

whereby the Sato-Vartia indices possess the virtue of simple decomposability. The pair formed

▲ ► 🛍 🖓 🕩 15:34 12-5-2015

