Chapter 3 METHOD OF SAMPLE TABULATION AND RELIABILITY OF ESTIMATES

Sample Design

- (a) Private households and institutional households with less than 30 persons were sampled.
- (b) Institutional households with 30 persons or more, residents in camps of Self-Defense Forces, inmates of reformatory institutions, etc. were complete count.

The sampling ratios used for (a) were determined by the sampling size according to respective population size of municipality (*shi,ku,machi,mura*) to take into consideration of the accuracy. The results were shown in the following table.

Table 1. Average Sampling Ratio for (a)

	Sampling Ratio		
	%	1/n	
Japan	9. 9	10. 1	

	Sampling Ratio					
Population Size	Shi,Machi, or Mura		Ku (Tokyo)		Ku (20 Major Cities)	
	%	1/n	%	1/n	%	1/n
500,000 inhabitants or more	5.3	19.0	5.3	19.0	5.3	19.0
300,000 to 499,999 inhabitants	5.0	20.2	8.5	11.8	5.0	20.2
200,000 to 299,999 inhabitants	7.2	13.8	12.2	8.2	7.2	13.8
100,000 to 199,999 inhabitants	13.5	7.4	21.7	4.6	13.5	7.4
50,000 to 99,999 inhabitants	10.6	9.5	35.7	2.8	23.8	4.2
30,000 to 49,999 inhabitants	16.5	6.1	-	-	34.2	2.9
20,000 to 29,999 inhabitants	22.8	4.4	_	-	_	_
10,000 to 19,999 inhabitants	37.2	2.7	_	_	_	_
5,000 to 9,999 inhabitants	54.2	1.8	_	_	_	_
2,000 to 4,999 inhabitants	74.7	1.3	-	-	_	_
under 2,000 inhabitants	85.5	1.2	_	_	_	_

Method of Estimation

The results of the households (a) were estimated as the product of the sample count by the reciprocal of the sampling ratio of each municipality.

However, the result of (b) was obtained by complete count.

An estimate \hat{X}_k or \hat{X} , that is, the number of persons or households for private households only having the characteristics concerned in an area is obtained as follows.

(Municipality)

$$\hat{X}_k = \left(\frac{N_{k1}}{n_{k1}} \cdot \sum_{i1} x_{i1}\right) + \sum_{i2} x_{i2}$$

(Japan or prefectures)

$$\hat{X} = \sum_{k} \hat{X}_{k} = \sum_{k} \left\{ \left(\frac{N_{k1}}{n_{k1}} \cdot \sum_{i1} x_{i1} \right) + \sum_{i2} x_{i2} \right\}$$

Where

k : k-th municipality in the area concerned

i1 : A person or a household of (a) i2 : A person or a household of (b) \hat{X}_k : An estimate of k-th municipality

 N_{k1} : Total population or household of (a) in the k-th municipality

 n_{k1} : Number of sample persons or households of (a) in the k-th municipality x_{i1} : Number of persons or households of (a) having the characteristics concerned

counted for the k-th municipality

 x_{i2} : Number of persons or households of (b) having the characteristics concerned

counted for the k-th municipality

 \hat{X} : Number of sample persons or households of (a) in Japan or prefectures

In addition, figures given in the tables may not necessarily add up to the total due to rounding.

Sampling Error of Estimate

The figures obtained from the sample tabulation mentioned above are not consistent with those obtained from the complete count due to sampling error.

Though magnitude of sampling errors varies with the size of estimates and the kind of items, the ratios of standard error by size of estimates calculated under the assumption of simple random sampling of household members are shown in the table below for convenience.

The ratios of standard error have been calculated by the following formula.

(Municipality)

$$CV(\hat{X}_k) = \frac{1}{N_k \cdot \hat{p}_k} \sqrt{N_{k1} \cdot (N_{k1} - n_{k1}) \cdot \frac{\hat{p}_{k1}(1 - \hat{p}_{k1})}{n_{k1}}}$$

(Japan or prefectures)

$$CV(\hat{X}) = \frac{1}{N \cdot \hat{p}} \cdot \sqrt{\sum_{k} N_{k1} \cdot (N_{k1} - n_{k1}) \cdot \frac{\hat{p}_{k1}(1 - \hat{p}_{k1})}{n_{k1}}}$$

Where

 N_k : Total population or household in the k-th municipality

 \hat{p}_k : Ratio of estimate to the total population or household in the k-th

municipality $(=\hat{X}_k/N_k)$

 \hat{p}_{k1} : Ratio of estimate to the total population or household of (a) in the k-th

municipality $(=\hat{X}_{k1}/N_{k1})$

N : Total people or total household in Japan or prefectures

 \hat{p} : Ratio of estimate to the total population or household in Japan or

 $prefectures (= \hat{X}/N)$

 \hat{X}_{k1} : Number of sample persons or households of (a) in the k-th

municipality

$$\widehat{X}_{k1} = \left(\frac{N_{k1}}{n_{k1}} \cdot \sum_{i1} x_{i1}\right)$$

表 2 推定値(人口及び世帯)の大きさ別標準誤差率(全国の結果) Table2 Ratio of Standard Error by Size of Estimates (Japan)

	標準誤差率			
推定値の大きさ	Ratio of Standard Error			
Size of estimates	人口	世帯		
	Population	Household number		
10, 000, 000	0. 00104	0.00099		
8, 000, 000	0.00117	0.00113		
6, 000, 000	0.00136	0.00134		
5, 000, 000	0.00150	0.00148		
4, 000, 000	0.00168	0.00167		
3, 000, 000	0. 00195	0.00195		
2, 000, 000	0.00240	0.00241		
1,000,000	0.00340	0.00345		
800, 000	0.00381	0.00386		
600, 000	0.00440	0.00447		
400,000	0.00539	0.00548		
300, 000	0.00623	0.00633		
200, 000	0.00763	0.00776		
150, 000	0.00881	0.00897		
100, 000	0.01080	0. 01099		
80,000	0. 01207	0. 01229		
60, 000	0. 01394	0.01419		
40,000	0.01708	0. 01739		
30, 000	0. 01972	0.02008		
20, 000	0. 02415	0.02460		
15, 000	0.02789	0.02840		
10,000	0.03416	0.03479		
8,000	0. 03819	0. 03889		
6,000	0.04410	0. 04491		
4,000	0.05401	0.05500		
3,000	0. 06237	0. 06351		
2,000	0. 07638	0. 07779		
1, 500	0. 08820	0. 08982		
1,000	0. 10802	0. 11001		
800	0. 12077	0. 12300		
600	0. 13946	0. 14203		
400	0. 17080	0. 17394		
300	0. 19722	0. 20085		
200	0. 24155	0. 24600		
150	0. 27892	0. 28405		
100	0. 34160	0. 34789		